Prediction of cardiovascular risk using machine-learning methods. Sex-specific differences

Castel-Feced, Sara (Universidad de Zaragoza) ; Aguilar-Palacio, Isabel (Universidad de Zaragoza) ; Malo, Sara (Universidad de Zaragoza) ; González-García, Juan ; Maldonado, Lina (Universidad de Zaragoza) ; Rabanaque-Hernández, María José (Universidad de Zaragoza)
Prediction of cardiovascular risk using machine-learning methods. Sex-specific differences
Resumen: Machine learning (ML) algorithms offer some advantages over traditional scoring systems to assess the influence of cardiovascular risk factors (CVRFs) on the risk of major cardiovascular event (MACE), and could be useful in clinical practice. These algorithms can also be trained using a growing body of real world data (RWD). The aim of the study was to evaluate the MACE risk applying the XGBoost and Random Forest ML algorithms to RWD, stratifying the study population by sex, comparing the outcomes of these two algorithms.MethodsThe follow-up period of the study was from 2018 to 2020. For each algorithm, 3 models were generated, including age and different combinations of three groups of variables: blood test and blood pressure measurements; CVRFs; and medication adherence.ResultsIn this study, 52,393 subjects were included, of whom 581 suffered a MACE. The incidence of MACE was 1% in women and 1.3% in men. The most prevalent CVRF was hypertension, followed by hypercholesterolaemia in both sexes. Adherence to treatment was highest for antihypertensives and lowest for antidiabetics. In all models age was the greatest relative contributor to the risk of MACE, followed by adherence to antidiabetics. Adherence to treatment proved to be an important variable in the risk of having a MACE. Moreover, similar performance was found for RF and XGBoost algorithms.ConclusionThese findings support the use of ML to assess cardiovascular risk and guide personalized prevention strategies in primary care settings.
Idioma: Inglés
DOI: 10.3389/fcvm.2025.1579947
Año: 2025
Publicado en: Frontiers in cardiovascular medicine 12 (2025), 1579947 [11 pp.]
ISSN: 2297-055X

Financiación: info:eu-repo/grantAgreement/ES/DGA-GRISSA/B09-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA-IIU/796-2019
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/PI22-01193
Tipo y forma: Article (Published version)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Área (Departamento): Área Métodos Cuant.Econ.Empres (Dpto. Economía Aplicada)
Área (Departamento): Área Medic.Prevent.Salud Públ. (Dpto. Microb.Ped.Radio.Sal.Pú.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:37:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Métodos Cuantitativos para la Economíay la Empresa
Articles > Artículos por área > Estadística e Investigación Operativa
Articles > Artículos por área > Medicina Preventiva y Salud Pública



 Record created 2025-07-22, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)