Deep learning-based keratoconus detection from Scheimpflug images

Casado-Moreno, Juan (Universidad de Zaragoza) ; Masia, Belén (Universidad de Zaragoza) ; Lu, Nanji ; Cui, Lele ; Consejo, Alejandra (Universidad de Zaragoza)
Deep learning-based keratoconus detection from Scheimpflug images
Resumen: This study evaluates the effectiveness of deep learning techniques applied to raw Scheimpflug corneal images for keratoconus detection, with a particular focus on forme fruste (FF) keratoconus, which refers to preclinical cases. Using an original dataset of 22,750 images from 910 eyes, a deep learning model based on transfer learning with a pre-trained VGG16 architecture was trained, incorporating specific preprocessing steps and data augmentation strategies. The proposed approach achieved an overall accuracy of 90.70%, with a sensitivity of 80.57%, and a specificity of 80.56% for FF keratoconus classification, and an AUC of 0.89. For clinical keratoconus, the model demonstrated a sensitivity of 93.28%, a specificity of 99.40%, and an AUC of 1.00. These findings highlight the potential of leveraging raw Scheimpflug images in deep learning-based keratoconus detection, particularly for identifying early-stage structural changes that may not be apparent in conventional topographic assessments.
Idioma: Inglés
DOI: 10.1364/BOE.559663
Año: 2025
Publicado en: Biomedical Optics Express 16, 8 (2025), 3047-3060
ISSN: 2156-7085

Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101162733/EU/Visual Impairment Screening using Images from Ophthalmology and Novel pathways for Structural Analysis and Fast Evaluation/VISIONSAFE
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Aplicada (Dpto. Física Aplicada)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-09-13:25:56)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos
Articles > Artículos por área > Física Aplicada



 Record created 2025-08-18, last modified 2025-10-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)