Physics-informed machine learning digital twin for reconstructing prostate cancer tumor growth via PSA tests
Financiación H2020 / H2020 Funds
Resumen: Existing prostate cancer monitoring methods, reliant on prostate-specific antigen (PSA) measurements in blood tests often fail to detect tumor growth. We develop a computational framework to reconstruct tumor growth from the PSA integrating physics-based modeling and machine learning in digital twins. The physics-based model considers PSA secretion and flux from tissue to blood, depending on local vascularity. This model is enhanced by deep learning, which regulates tumor growth dynamics through the patient’s PSA blood tests and 3D spatial interactions of physiological variables of the digital twin. We showcase our framework by reconstructing tumor growth in real patients over 2.5 years from diagnosis, with tumor volume relative errors ranging from 0.8% to 12.28%. Additionally, our results reveal scenarios of tumor growth despite no significant rise in PSA levels. Therefore, our framework serves as a promising tool for prostate cancer monitoring, supporting the advancement of personalized monitoring protocols.
Idioma: Inglés
DOI: 10.1038/s41746-025-01890-x
Año: 2025
Publicado en: npj digital medicine 8, 1 (2025), 485 [10 pp.]
ISSN: 2398-6352

Financiación: info:eu-repo/grantAgreement/ES/DGA/T50-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/101018587/EU/Individual and Collective Migration of the Immune Cellular System/ICoMICS
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PLEC2021-007709
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-10-17-14:18:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Record created 2025-08-26, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)