000162582 001__ 162582
000162582 005__ 20251017144620.0
000162582 0247_ $$2doi$$a10.1016/j.apm.2025.116367
000162582 0248_ $$2sideral$$a145117
000162582 037__ $$aART-2025-145117
000162582 041__ $$aeng
000162582 100__ $$0(orcid)0000-0003-3570-0202$$aLlorente, Víctor J.$$uUniversidad de Zaragoza
000162582 245__ $$aConserved quantities in the ocean surface boundary layer: A fresh perspective on a classical problem
000162582 260__ $$c2025
000162582 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162582 5203_ $$aNoether's (1918) (first) Theorem reveals three conservation laws from physical symmetries in the wind-induced ocean's surface boundary layer, as described by the Classical Ekman's (1905) Theory. The Lagrangian function used for the Ekman model is comprised of two terms. A term that accounts for vertical mixing, parametrized by a constant eddy viscosity coefficient, and a second term for the rotation of the current field due to Coriolis force. The derived conservation laws, which involve relationships between the helicity, enstrophy, and kinetic energy within the surface boundary layer, allow recovering and explaining well-known and new features of the Classical Ekman's (1905) Theory. Enstrophy, which is a property of the entire water column, can be readily obtained from the surface deflection angle at the surface alone. Conservation laws provide a theoretical explanation for the Bjerknes experiment, according to which the phase angle grows linearly with depth. Remarkably, a unique symmetry-preserving constant eddy viscosity coefficient can be determined from observations, provided that observations are described by Ekman's Theory. This outcome suggests that the determined value converges more closely to the true physical value compared to crude estimates by statistical fitting.
000162582 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000162582 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162582 700__ $$aPadilla, Enrique M.
000162582 700__ $$aDíez-Minguito, Manuel
000162582 700__ $$aValle-Levinson, Arnoldo
000162582 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000162582 773__ $$g150 (2025), 116367 [14 pp.]$$pAppl. math. model.$$tApplied mathematical modelling$$x0307-904X
000162582 8564_ $$s2081772$$uhttps://zaguan.unizar.es/record/162582/files/texto_completo.pdf$$yVersión publicada
000162582 8564_ $$s1706770$$uhttps://zaguan.unizar.es/record/162582/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162582 909CO $$ooai:zaguan.unizar.es:162582$$particulos$$pdriver
000162582 951__ $$a2025-10-17-14:21:15
000162582 980__ $$aARTICLE