AI-Based Facial Phenotyping Supports a Shared Molecular Axis in PACS1-, PACS2-, and WDR37-Related Syndromes

del Rincón, Julia ; Gil-Salvador, Marta (Universidad de Zaragoza) ; Lucia-Campos, Cristina (Universidad de Zaragoza) ; Acero, Laura (Universidad de Zaragoza) ; Trujillano, Laura ; Arnedo, María (Universidad de Zaragoza) ; Pamplona, Pilar (Universidad de Zaragoza) ; Ayerza-Casas, Ariadna (Universidad de Zaragoza) ; Puisac, Beatriz (Universidad de Zaragoza) ; Ramos, Feliciano J. (Universidad de Zaragoza) ; Pié, Juan (Universidad de Zaragoza) ; Latorre-Pellicer, Ana (Universidad de Zaragoza)
AI-Based Facial Phenotyping Supports a Shared Molecular Axis in PACS1-, PACS2-, and WDR37-Related Syndromes
Resumen: Despite significant advances in gene discovery, the molecular basis of many rare genetic disorders remains poorly understood. The concept of disease modules, clusters of functionally related genes whose disruption leads to overlapping phenotypes, offers a valuable framework for interpreting these conditions. However, identifying such relationships remains particularly challenging in ultra-rare syndromes due to the limited number of documented cases. We hypothesized that AI-based facial phenotyping could aid in identifying shared molecular mechanisms by detecting phenotypic convergence among clinically related syndromes. To test this, we used Schuurs–Hoeijmakers syndrome (SHMS; OMIM #615009), caused by a recurrent de novo variant in PACS1, as a model to explore potential phenotypic and functional associations with PACS2-related disorder (DEE66; OMIM #618067) and WDR37-related disorder (NOCGUS; OMIM #618652). Facial photographs of individuals with SHMS were analyzed using the DeepGestalt and GestaltMatcher algorithms. In addition to consistently recognizing SHMS as a distinct clinical entity, the algorithms frequently matched DEE66 and NOCGUS, suggesting a shared facial gestalt. Binary comparisons further confirmed overlapping craniofacial features among the three disorders. These findings were supported by literature review, indicating clinical overlapping and potential functional associations. Overall, our results confirm the presence of consistent facial similarities among PACS1-, PACS2-, and WDR37-related syndromes and highlight the utility of AI-driven facial phenotyping as a complementary tool for uncovering clinically relevant relationships in ultra-rare genetic disorders.
Idioma: Inglés
DOI: 10.3390/ijms26167964
Año: 2025
Publicado en: International Journal of Molecular Sciences 26, 16 (2025), 7964 [13 pp.]
ISSN: 1661-6596

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/B32-20R
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/PI23-01370
Financiación: info:eu-repo/grantAgreement/ES/UZ/JIUZ-2023-SAL-06
Tipo y forma: Article (Published version)
Área (Departamento): Área Fisiología (Dpto. Farmac.Fisiol.y Med.L.F.)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)
Área (Departamento): Área Pediatría (Dpto. Microb.Ped.Radio.Sal.Pú.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:21:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Fisiología
Articles > Artículos por área > Pediatría
Articles > Artículos por área > Medicina



 Record created 2025-09-12, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)