Accurate determinant computation of Cauchy-polynomial matrices

Khiar, Yasmina (Universidad de Zaragoza) ; Mainar, Esmeralda (Universidad de Zaragoza) ; Peña, Juan Manuel (Universidad de Zaragoza) ; Royo-Amondarain, Eduardo (Universidad de Zaragoza)
Accurate determinant computation of Cauchy-polynomial matrices
Resumen: This paper investigates the factorization of Cauchy-polynomial matrices, a structured class that generalizes Cauchy-Vandermonde matrices by incorporating polynomial bases different from the monomial basis. We analyze the impact of different polynomial bases, including q-Bernstein, h-Bernstein, and Said-Ball polynomials, on numerical accuracy. A key focus is the derivation of formulas for their determinants, satisfying the No Inaccurate Cancellation condition and ensuring high relative accuracy. The sensitivity of the algorithm under deviations of the input data is analyzed, and an upper running error bound is provided. Theoretical findings are supported by numerical experiments, demonstrating the superior accuracy of the proposed determinant formulas compared to standard computational methods, even when perturbations are considered.
Idioma: Inglés
DOI: 10.1007/s11075-025-02188-5
Año: 2025
Publicado en: NUMERICAL ALGORITHMS (2025), [20 pp.]
ISSN: 1017-1398

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:13:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-09-19, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)