Leveraging agent-based models and deep reinforcement learning to predict taxis in cell migration
Financiación H2020 / H2020 Funds
Resumen: We present a novel computational framework that combines Agent-Based Modeling (ABM) with Reinforcement Learning (RL) using the Double Deep Q-Network (DDQN) algorithm to determine cellular behavior in response to environmental signals. With this approach, the model captures the transduction of environmental cues into biological responses directly from experimental observations, without explicitly predefining cell behavior. This enables the prediction of dynamic, environment-dependent cell behavior and offers a scalable and flexible alternative to traditional rule-based ABM. To illustrate its potential, we present an application to barotactic cell migration data from microfluidic device experiments, where cells adapt their migration behavior based on pressure gradients, demonstrating the model’s ability to generalize across varying geometries and pressure configurations. Thus, this approach introduces a novel direction for modeling how cells sense and transduce environmental cues into biological behaviors
Idioma: Inglés
DOI: 10.1038/s41540-025-00576-0
Año: 2025
Publicado en: npj Systems Biology and Applications 11, 1 (2025), 8 pp.
ISSN: 2056-7189

Financiación: info:eu-repo/grantAgreement/EC/H2020/101018587/EU/Individual and Collective Migration of the Immune Cellular System/ICoMICS
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Exportado de SIDERAL (2025-10-17-14:18:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras



 Notice créée le 2025-09-19, modifiée le 2025-10-17


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)