Quasi-projective varieties whose fundamental group is a free product of cyclic groups
Resumen: In the context of Serre’s question, we study smooth complex quasi-projective varieties whose fundamental group is a free product of cyclic groups. In particular, we focus on the case of surfaces and prove the existence of an admissible map from such a quasi-projective surface to a smooth complex quasi-projective curve. Associated with this result, we prove addition-deletion lemmas which describe a natural operation correlating this family of quasi-projective surfaces and groups. Our methods also allow us to produce examples of curves in smooth projective surfaces whose complements have free products of cyclic groups as fundamental groups, generalizing classical results on Cp,q​ curves and torus-type projective sextics, and describing the conditions under which this phenomenon occurs.
Idioma: Inglés
DOI: 10.4171/RMI/1550
Año: 2025
Publicado en: REVISTA MATEMATICA IBEROAMERICANA 41, 5 (2025), 1759-1794
ISSN: 0213-2230

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031526-I
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-10-17-14:37:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2025-09-19, last modified 2025-10-17


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)