000163033 001__ 163033
000163033 005__ 20251009133842.0
000163033 0247_ $$2doi$$a10.1016/j.supflu.2025.106778
000163033 0248_ $$2sideral$$a145527
000163033 037__ $$aART-2025-145527
000163033 041__ $$aeng
000163033 100__ $$aAcuña, Ariel A.
000163033 245__ $$aExploring cluster formation in CO₂ + hydrocarbon mixtures: From binary to ternary systems
000163033 260__ $$c2025
000163033 5060_ $$aAccess copy available to the general public$$fUnrestricted
000163033 5203_ $$aThis study aims to investigate clustering phenomena at infinite dilution in supercritical CO₂-rich mixtures with n-heptane (n-C₇) and n-dodecane (n-C₁₂), in both binary and ternary systems. The main objective is to understand how the individual clustering behaviors of the solutes combine in the ternary mixture, and whether this combination follows an additive rule. To this end, density measurements were carried out at 313.15 K and 323.15 K over a pressure range of (10−70) MPa, enabling the determination of partial molar volumes as indicators of clustering. The results reveal a pronounced clustering effect at low pressures (below 20 MPa) for both binary and ternary systems, as evidenced by strongly negative partial molar volumes, which indicate the formation of compact solvation clusters around the solutes. In the ternary mixture, the clustering behavior was found to follow a nearly linear combination, based on the mole fractions of the clusters observed in the binary systems. This suggests that clustering in CO₂ + multi-solute systems may be predicted from binary behavior.
Two SAFT-type equations of state (PC-SAFT and SAFT-VR Mie) were employed to evaluate their ability to model the transition from binary to ternary systems. While both captured the non-ideal volumetric behavior, SAFT-VR Mie demonstrated better quantitative agreement. These findings improve our understanding of solute–solvent interactions in CO₂-rich environments and support enhanced modeling of processes such as supercritical extraction, carbon capture and storage (CCUS), and enhanced oil recovery (EOR).
000163033 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000163033 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000163033 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, Manuela$$uUniversidad de Zaragoza
000163033 700__ $$aGalliero, Guillaume
000163033 700__ $$aDaridon, Jean-Luc
000163033 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000163033 773__ $$g228 (2025), 106778 [12 pp.]$$pJ. supercrit. fluids$$tJournal of Supercritical Fluids$$x0896-8446
000163033 8564_ $$s2983752$$uhttps://zaguan.unizar.es/record/163033/files/texto_completo.pdf$$yVersión publicada
000163033 8564_ $$s1675069$$uhttps://zaguan.unizar.es/record/163033/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000163033 909CO $$ooai:zaguan.unizar.es:163033$$particulos$$pdriver
000163033 951__ $$a2025-10-09-13:25:57
000163033 980__ $$aARTICLE