An iterated greedy‐based metaheuristic with local search for the rank pricing problem

Calvete, Herminia I. (Universidad de Zaragoza) ; Galé, Carmen (Universidad de Zaragoza) ; Hernández, Aitor (Universidad de Zaragoza) ; Iranzo, José A. (Universidad de Zaragoza)
An iterated greedy‐based metaheuristic with local search for the rank pricing problem
Resumen: The rank pricing problem involves determining optimal prices for a set of products while accounting for customers' budgets and preferences. This study develops an iterated greedy‐based metaheuristic to efficiently solve this problem. The core idea is to generate a sequence of solutions by iteratively applying destruction and reconstruction phases. In this process, some components of a solution are removed, yielding partial solutions from which complete solutions are reconstructed. A local search method with three neighborhood exploration strategies is then applied. Computational experiments demonstrate the effectiveness of the proposed algorithm by comparing its performance with exact and heuristic methods from the literature. It consistently finds optimal or near‐optimal solutions for instances with known optima. For most cases where the optimal solution is unknown, the algorithm matches or outperforms the best‐known solutions. Moreover, it achieves these results with significantly lower computational times, reinforcing its suitability for solving the rank pricing problem.
Idioma: Inglés
DOI: 10.1111/itor.70105
Año: 2025
Publicado en: INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH (2025), [35 pp.]
ISSN: 0969-6016

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-139543OB-C43
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130961B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-10-24-16:56:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Estadística e Investigación Operativa



 Record created 2025-10-24, last modified 2025-10-24


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)