Integrating Polyglot Persistence with Large Language Models for Scalable Social Network Applications
Resumen: Modern cloud applications, particularly those resembling professional social networks, demand data management systems capable of handling heterogeneous, highly interconnected data. Traditional relational databases are often inadequate for such dynamic environments. This paper proposes a polyglot persistence architecture that combines document, graph, and key–value data stores to address diverse data storage and query requirements. Moreover, by integrating Large Language Models (LLMs) as an intelligent query and analytics interface, the system can interpret natural language requests, generate structured queries across multiple data stores, and provide personalized insights. We discuss the architectural rationale, outline the integration of LLMs with multi-database systems, and propose future research directions.
Idioma: Inglés
DOI: 10.1016/j.procs.2025.09.193
Año: 2025
Publicado en: Procedia computer science 270 (2025), 733-743
ISSN: 1877-0509

Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)
Dataset asociado: GitHub ( https://github.com/drdecurto/polyglot_llm)
Exportado de SIDERAL (2025-11-13-14:58:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > lenguajes_y_sistemas_informaticos



 Notice créée le 2025-11-13, modifiée le 2025-11-13


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)