Deep Learning for analyzing chaotic dynamics in biological time series: Insights from frog heart signals
Resumen: The study of experimental data is a relevant task in several physical, chemical and biological applications. In particular, the analysis of chaotic dynamics in cardiac systems is crucial as it can be related to certain pathological arrhythmias. When working with short and noisy experimental time series, some standard techniques for chaos detection cannot provide reliable results because of such data characteristics. Moreover, when small datasets are available, some Deep Learning techniques cannot be applied directly (that is, using part of the data to train the network, and using the trained network to analyze the remaining dataset). To overcome all these limitations, we propose an automatic algorithm that combines Deep Learning and some selection strategies based on a mathematical model of the same nature of the experimental data. To demonstrate its performance, we test it with experimental data obtained from ex-vivo frog heart experiments, achieving highly accurate results.
Idioma: Inglés
DOI: 10.1016/j.neucom.2025.131820
Año: 2025
Publicado en: Neurocomputing 660 (2025), 131820 [14 pp.]
ISSN: 0925-2312

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP94_21
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2024-156032NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU20-04039
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-140556OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-11-13-14:58:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2025-11-13, modifiée le 2025-11-13


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)