Multivariate integration of time series with ML for corn price forecasting in Colombia
Resumen: The volatility of corn prices poses a significant challenge for both producers and policymakers. This study proposes a hybrid model that combines Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM), optimized through Particle Swarm Optimization with Cuckoo Search (PSO-CS), for accurate corn price forecasting. The approach integrates multivariate time series data, including local prices from the Atlántico market and international futures prices from the Chicago Board of Trade (CBOT). Empirical Mode Decomposition (EMD) is applied to enhance signal clarity and improve model performance. Model performance is assessed through sensitivity analysis and statistical comparison using the Diebold-Mariano (DM) test. The results demonstrate that the proposed ensemble outperforms both individual models and neural network combinations, achieving a Mean Absolute Percentage Error (MAPE) of 2.06.
Idioma: Inglés
DOI: 10.1016/j.eswa.2025.129822
Año: 2026
Publicado en: Expert Systems with Applications 299, Part A (2026), 129822 [23 pp.]
ISSN: 0957-4174

Financiación: info:eu-repo/grantAgreement/ES/DGA/T59-23R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2025-11-13-14:58:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > lenguajes_y_sistemas_informaticos



 Notice créée le 2025-11-13, modifiée le 2025-11-13


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)