A gravity-based mounting approach for large-scale cryogenic calorimeter arrays

Alfonso, K. ; Armatol, A. ; Augier, C. ; Avignone, F. T. ; Azzolini, O. ; Barabash, A. S. ; Bari, G. ; Barresi, A. ; Baudin, D. ; Bellini, F. ; Benato, G. ; Benussi, L. ; Berest, V. ; Beretta, M. ; Bergé, L. ; Bettelli, M. ; Biassoni, M. ; Billard, J. ; Boffelli, F. ; Boldrini, V. ; Brandani, E. D. ; Brofferio, C. ; Bucci, C. ; Buchynska, M. ; Camilleri, J. ; Campani, A. ; Cao, J. ; Capelli, C. ; Capelli, S. ; Caracciolo, V. ; Cardani, L. ; Carniti, P. ; Casali, N. ; Celi, E. ; Chang, C. ; Chapellier, M. ; Chen, H. ; Chiesa, D. ; Cintas, D. ; Clemenza, M. ; Colantoni, I. ; Copello, S. ; Cremonesi, O. ; Creswick, R. J. ; D’Addabbo, A. ; Dafinei, I. ; Danevich, F. A. ; De Dominicis, F. ; De Jesus, M. ; De Marcillac, P. ; Dell’Oro, S. ; Di Domizio, S. ; Lorenzo, S. Di ; Dompe, V. ; Drobizhev, A. ; Dumoulin, L. ; Fantini, G. ; Idrissi, M. El ; Faverzani, M. ; Ferri, E. ; Ferri, F. ; Ferroni, F. ; Figueroa-Feliciano, E. ; Formaggio, J. ; Franceschi, A. ; Fu, S. ; Fujikawa, B. K. ; Gascon, J. ; Ghislandi, S. ; Giachero, A. ; Girola, M. ; Gironi, L. ; Giuliani, A. ; Gorla, P. ; Gotti, C. ; Grant, C. ; Gras, P. ; Guillaumon, P. V. ; Gutierrez, T. D. ; Han, K. ; Hansen, E. V. ; Heeger, K. M. ; Helis, D. L. ; Huang, H. Z. ; Hurst, M. T. ; Imbert, L. ; Juillard, A. ; Karapetrov, G. ; Keppel, G. ; Khalife, H. ; Kobychev, V. V. ; Kolomensky, Yu. G. ; Kowalski, R. ; Lattaud, H. ; Lefevre, M. ; Lisovenko, M. ; Liu, R. ; Liu, Y. ; Loaiza, P. ; Ma, L. ; Mancarella, F. ; Manenti, N. ; Mariani, A. ; Marini, L. ; Marnieros, S. ; Martinez, M. (Universidad de Zaragoza) ; Maruyama, R. H. ; Mas, Ph. ; Mayer, D. ; Mazzitelli, G. ; Mazzola, E. ; Mei, Y. ; Moore, M. N. ; Morganti, S. ; Napolitano, T. ; Nastasi, M. ; Nikkel, J. ; Nones, C. ; Norman, E. B. ; Novosad, V. ; Nutini, I. ; O’Donnell, T. ; Olivieri, E. ; Olmi, M. ; Oregui, B. T. ; Pagan, S. ; Pageot, M. ; Pagnanini, L. ; Pasciuto, D. ; Pattavina, L. ; Pavan, M. ; Penek, Ö ; Peng, H. ; Pessina, G. ; Pettinacci, V. ; Pira, C. ; Pirro, S. ; Pochon, O. ; Poda, D. V. ; Polakovic, T. ; Polischuk, O. G. ; Pottebaum, E. G. ; Pozzi, S. ; Previtali, E. ; Puiu, A. ; Puranam, S. ; Quitadamo, S. ; Rappoldi, A. ; Raselli, G. L. ; Ressa, A. ; Rizzoli, R. ; Rosenfeld, C. ; Rosier, P. ; Rossella, M. ; Scarpaci, J. A. ; Schmidt, B. ; Serino, R. ; Shaikina, A. ; Shang, K. ; Sharma, V. ; Shlegel, V. N. ; Singh, V. ; Sisti, M. ; Slocum, P. ; Speller, D. ; Surukuchi, P. T. ; Taffarello, L. ; Tomassini, S. ; Tomei, C. ; Torres, A. ; Torres, J. A. ; Tozzi, D. ; Tretyak, V. I. ; Trotta, D. ; Velazquez, M. ; Vetter, K. J. ; Wagaarachchi, S. L. ; Wang, G. ; Wang, L. ; Wang, R. ; Welliver, B. ; Wilson, J. ; Wilson, K. ; Winslow, L. A. ; Xie, F. ; Xue, M. ; Yang, J. ; Yefremenko, V. ; Umatov, V. I. ; Zarytskyy, M. M. ; Zhu, T. ; Zolotarova, A. ; Zucchelli, S.
A gravity-based mounting approach for large-scale cryogenic calorimeter arrays
Financiación H2020 / H2020 Funds
Resumen: Cryogenic calorimeters are among the leading technologies for searching for rare events. The CUPID experiment is exploiting this technology to deploy a tonne-scale detector to search for neutrinoless double-beta decay of Mo. The CUPID collaboration proposed an innovative approach to assembling cryogenic calorimeters in a stacked configuration, held in position solely by gravity. This gravity-based assembly method is unprecedented in the field of cryogenic calorimeters and offers several advantages, including relaxed mechanical tolerances and simplified construction. To assess and optimize its performance, we constructed a medium-scale prototype hosting 28 LiMoO crystals and 30 Ge light detectors, both operated as cryogenic calorimeters at the Laboratori Nazionali del Gran Sasso (Italy). Despite an unexpected excess of noise in the light detectors, the results of this test proved (i) a thermal stability better than ±0.5 mK at 10 mK, (ii) a good energy resolution of LiMoO cryogenic calorimeters, (6.6 ± 2.2) keV FWHM at 2615 keV, and (iii) a LiMoO light yield measured by the closest light detector of 0.36 keV/MeV, sufficient to guarantee the particle identification requested by CUPID.
Idioma: Inglés
DOI: 10.1140/epjc/s10052-025-14613-z
Año: 2025
Publicado en: The European Physical Journal C 85, 9 (2025), [13 pp.]
ISSN: 1434-6044

Financiación: info:eu-repo/grantAgreement/EC/H2020/742345/EU/Cryogenic Rare-event Observatory with Surface Sensitivity/CROSS
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Atóm.Molec.y Nucl. (Dpto. Física Teórica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-11-21-14:24:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física Atómica, Molecular y Nuclear



 Record created 2025-11-21, last modified 2025-11-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)