High Pressure-Based Synthesis of Nanoporous Metal–Organic Framework ZIF-93 Giving Rise to a Phase for Proton Conduction
Resumen: This study aims to develop a green, solvent-free synthesis of ZIF-93 (ZIF stands for zeolitic imidazolate framework) and to explore the formation of different phases. We report the solvent-free synthesis of a previously unreported nanoporous ZIF phase, ZIF-93_HP (HP referring to “high-pressure”), from zinc oxide using a dual high-pressure (150 MPa) and thermal (110 °C) method. The influence of key synthesis parameters, such as the amount of NH4NO3 promotor and reaction steps, was systematically investigated to maximize the conversion of ZnO into the intermediate ZIF-93_HP, while, in parallel, preventing its further conversion into nanoporous ZIF-93 phase. The material was extensively characterized by X-ray diffraction, thermogravimetry, electron microscopy and N2 and CO2 adsorption, which revealed insights into the structure, morphology and nanoporosity of ZIF-93_HP. ZIF-93_HP, with empirical formula of Zn(C5N2OH5)2·1.2(NH4NO3)·(H2O), is related to the previously reported ZIF-93 (Zn(C5N2OH5)2). Water washing of this phase led to the transformation into ZIF-93 and a significant increase in the BET specific surface area (from 4 to 181 m2/g). In addition, the presence of NH4+ and NO3– ions into its structure makes ZIF-93_HP proton conductor at room temperature and moisture conditions (3.76 × 10–3 S/cm), a property that decreases with increasing temperature due to dehydration. The discovery of ZIF-93_HP highlights the potential of the high-pressure, solvent-free synthesis as a powerful tool for the exploration of different ZIFs and reticular materials that are inaccessible through traditional solvothermal methods. As crystallization under solvent-free conditions is often influenced by nonthermodynamic equilibrium, this approach holds a great potential for expanding the material landscape by enabling the discovery of different phases and structures with unique properties, such as the promising proton conductivity demonstrated here.
Idioma: Inglés
DOI: 10.1021/acsanm.5c03130
Año: 2025
Publicado en: ACS APPLIED NANO MATERIALS 8, 43 (2025), 20713-20725
ISSN: 2574-0970

Financiación: info:eu-repo/grantAgreement/ES/DGA/E13-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T68-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/CNS2023-144346
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RYC-2018-024561-I
Financiación: info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2021-122940OB-C31
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2022-138582OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-11-21-14:27:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería Química



 Record created 2025-11-21, last modified 2025-11-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)