On some elliptic generalizations of the Metropolis–Stein–Stein map
Resumen: Jacobian elliptic functions have been at the heart of nonlinear science for two hundred years. Through the exploration of two biparametric (,) elliptic-based generalizations of the Metropolis–Stein–Stein (MSS) map, +1 = sn() and +1 = sncn(), with sn and cn being Jacobian elliptic functions of parameter , we provide analytical and numerical evidence that solely varying the impulse per unit of amplitude of the periodic map functions, while keeping its amplitude constant, shifts the bifurcation amplitudes, including those corresponding to the onset and extinction of chaos, with respect to the case of the standard MSS map. The analyses of the Schwarzian derivative of the two elliptic maps indicate that a change of its sign from negative to positive as the shape parameter is increased from 0 to 1 only occurs for the map sncn, while the corresponding routes order↔chaos for both elliptic maps still follow Feigenbaum’s universality. We found that maximal extension of the state space wherein sncn presents a positive Schwarzian derivative occurs at a single critical value of the shape parameter: = ≃ 0.985682. Remarkably, this value corresponds to a magic universal waveform which optimally enhances directed ratchet transport by symmetry breaking and is associated with an enhancement of chaos for ≲ 1 in parameter space with respect to the shift-symmetric map sn It should be emphasized that this change in the sign of the Schwarzian derivative is a genuine feature of the map sncn which is completely absent in the standard MSS map
Idioma: Inglés
DOI: 10.1016/j.physd.2025.135036
Año: 2025
Publicado en: PHYSICA D-NONLINEAR PHENOMENA 484 (2025), 135036 [8 p.]
ISSN: 0167-2789

Financiación: info:eu-repo/grantAgreement/ES/DGA/E36-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-108508GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2023-147734NB-I00
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Física Aplicada (Dpto. Física Aplicada)
Fecha de embargo : 2027-11-13
Exportado de SIDERAL (2025-11-27-15:16:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > fisica_aplicada



 Notice créée le 2025-11-27, modifiée le 2025-11-27


Preprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)