Stacked volume holographic gratings for extending the operational wavelength range in LED and solar applications
Resumen: A novel stacking procedure is presented for volume phase holographic gratings (VPHGs) recorded in photopolymer material using Corning Willow Glass as a flexible substrate in order to achieve broader angular and spectral selectivity in a diffractive device with high efficiency for solar and LED applications. For the first time to our knowledge, we have shown a device designed for use with a white LED that has the same input and output angles and high efficiency when illuminated by different wavelengths. In this paper, two VPHGs were designed, experimentally recorded, and tested when illuminated at normal incidence. The experimental approach is based on stacking two individual gratings in which the spatial frequency and slant have been tailored to the target wavelength and using real-time on-Bragg monitoring of the gratings in order to control the recorded refractive index modulation, thereby optimizing each grating efficiency for its design wavelength. Lamination of the two gratings together was enabled by using a flexible glass substrate (Corning Willow Glass). Recording conditions were studied in order to minimize the change in diffraction efficiency and peak diffraction angle during lamination and bleaching. The final fabricated stacked device was illuminated by a white light source, and its output was spectrally analyzed. Compared to a single grating, the stacked device demonstrated a twofold increase in angular and wavelength range. The angular and wavelength selectivity curves are in good agreement with the theoretical prediction for this design. This approach could be used to fabricate stacked lenses for white light LED or solar applications.
Idioma: Inglés
DOI: 10.1364/AO.383577
Año: 2020
Publicado en: Applied Optics 59, 8 (2020), 2569-2579
ISSN: 1559-128X

Factor impacto JCR: 1.98 (2020)
Categ. JCR: OPTICS rank: 62 / 99 = 0.626 (2020) - Q3 - T2
Factor impacto SCIMAGO: 0.668 - Atomic and Molecular Physics, and Optics (Q1) - Engineering (miscellaneous) (Q1) - Electrical and Electronic Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E44-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2016-81040-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Física Aplicada (Dpto. Física Aplicada)
Área (Departamento): Área Óptica (Dpto. Física Aplicada)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-12-04-14:38:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física Aplicada
Artículos > Artículos por área > Optica



 Registro creado el 2025-12-04, última modificación el 2025-12-04


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)