Unitemporal approach to fire severity mapping using multispectral synthetic databases and Random Forests
Resumen: Fire severity assessment is crucial for predicting ecosystem response and prioritizing post-fire forest management strategies. Although a variety of remote sensing approaches have been developed, more research is still needed to improve the accuracy and effectiveness of fire severity mapping. This study proposes a unitemporal simulation approach based on the generation of synthetic spectral databases from linear spectral mixing. To fully exploit the potential of these training databases, the Random Forest (RF) machine learning algorithm was applied to build a classifier and regression model. The predictive models parameterized with the synthetic datasets were applied in a case study, the Sierra de Luna wildfire in Spain. Single date Landsat-8 and Sentinel-2A imagery of the immediate post-fire environment were used to develop the validation spectral datasets and a Pléiades orthoimage, providing the ground truth data. The four defined severity categories – unburned (UB), partial canopy unburned (PCU), canopy scorched (CS), and canopy consumed (CC) – demonstrated high accuracy in the bootstrapped (about 95%) and real validation sets (about 90%), with a slightly better performance observed when the Sentinel-2A dataset was used. Abundance of four ground covers (green vegetation, non-photosynthetic vegetation, soil, and ash) was also quantified with moderate (~45% for NPV) or high accuracy (higher than 75% for the remaining covers). No specific pattern in the comparison of sensors was observed. Variable importance analysis highlighted the complementary behavior of the spectral bands, although the contrast between the near and shortwave infrared regions stood out above the rest. Comparison of procedures reinforced the usefulness of the approach, as RF image-derived models and the multiple endmember spectral unmixing technique (MESMA) showed lower accuracy. The capabilities for detailed mapping are reflected in the development of different types of cartography (classification maps and fraction cover maps). The approach holds great potential for fire severity assessment, and future research needs to extend the predictive modeling to other burned areas – also in different ecosystems – and analyze its competence and the possible adaptations needed.
Idioma: Inglés
DOI: 10.1016/j.rse.2020.112025
Año: 2020
Publicado en: Remote Sensing of Environment 249, 112025 (2020), [19 pp]
ISSN: 0034-4257

Factor impacto JCR: 10.164 (2020)
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 12 / 273 = 0.044 (2020) - Q1 - T1
Categ. JCR: IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY rank: 1 / 29 = 0.034 (2020) - Q1 - T1
Categ. JCR: REMOTE SENSING rank: 1 / 32 = 0.031 (2020) - Q1 - T1

Factor impacto SCIMAGO: 3.611 - Computers in Earth Sciences (Q1) - Soil Science (Q1) - Geology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/S51-17R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Análisis Geográfico Regi. (Dpto. Geograf. Ordenac.Territ.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-12-04-14:38:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Análisis Geográfico Regional



 Registro creado el 2025-12-04, última modificación el 2025-12-04


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)