A new algorithm for identifying influential nodes in multiplex networks
Resumen: Multiplex networks provide a powerful conceptual framework for analyzing complex systems characterized by multi-dimensional interdependencies. Moreover, the dynamics on top of these networks could describe processes such as epidemic spreading and the resilience of real interconnected systems more accurately. Identifying influential nodes in such multilayered systems remains a crucial challenge. Here, we propose a novel model, the multiplex multi-attribute Laplacian gravity model (MMALG), to assess the influence of nodes in multiplex networks based on the Laplacian centrality and the gravity model. Experimental analyses on both synthetic and real-world networks reveal that the proposed method outperforms others in discovering key nodes when disease dynamics are simulated on top of multiplex networks.
Idioma: Inglés
DOI: 10.1016/j.chaos.2025.117549
Año: 2025
Publicado en: Chaos, Solitons and Fractals 202, Part 2 (2025), 117549 [12 pp.]
ISSN: 0960-0779

Financiación: info:eu-repo/grantAgreement/ES/DGA/E36-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2023-149409NB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-12-12-14:42:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física Teórica



 Registro creado el 2025-12-12, última modificación el 2025-12-12


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)