Eco-design measures based on the circular economy and the efficiency use of natural resources. The case study of ZeroenergyMod project.
Resumen: Critical materials are essential to the global economy but face supply risks from geopolitical, environmental, and market pressures. The European Union identifies 34 critical materials, ranging from lithium, cobalt, and nickel for batteries to rare earth elements for magnets, and high‑strength alloy metals such as chromium and tungsten. Even abundant metals like copper and aluminium can become critical when demand outpaces sustainable supply.

Eco‑design offers strategies to mitigate this dependency by extending product lifespan, enabling component disassembly for recycling, and seeking viable material substitutions. In modular construction — especially container‑based self‑sufficient modules — such measures can improve both resource efficiency and sustainability.

Although these modules are increasingly used in remote and off‑grid contexts, little scientific work has quantified the criticality of their materials. This study addresses that gap by applying thermodynamic rarity indicators to a case study: the ZEROENERGYMOD project module, built to PassivHaus standards and integrating renewable generation with dual energy storage (lithium batteries and green hydrogen).

The research focuses on identifying subsystems with the highest critical material contribution, assessing trade‑offs between energy storage options, and proposing design measures to reduce criticality without compromising function. The structural frame and internal partitions contributed 72 % of total thermodynamic rarity, largely due to nickel in stainless steel. Photovoltaic modules and hydrogen systems, though lighter in mass, showed elevated rarity from tellurium, platinum, and iridium. Hydrogen storage offered higher energy density (MJ/kWh) than lithium iron phosphate batteries under the studied conditions.

Replacing stainless steel with coated carbon steel where feasible, favouring wind over photovoltaics in suitable contexts, and developing alternative photovoltaic technologies can reduce critical material use without compromising function. These strategies demonstrate how thermodynamic rarity metrics can be integrated into sustainable module design to address multiple Sustainable Development Goals.

Idioma: Inglés
DOI: 10.13044/j.sdi.d2.0619
Año: 2025
Publicado en: Journal of sustainable development indicators 1, 3 (2025), 1-15
ISSN: 3044-5221

Financiación: info:eu-repo/grantAgreement/EUR/LIFE19 COM-ES-001327
Financiación: info:eu-repo/grantAgreement/ES/MICINN-RESTORE PID2023-148401OB-I00
Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2024-01
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-12-19-14:42:22)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2025-12-19, última modificación el 2025-12-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)