A flexible and lightweight deep learning weather forecasting model
Resumen: Numerical weather prediction is an established weather forecasting technique in which equations describing wind, temperature, pressure and humidity are solved using the current atmospheric state as input. This study examines deep learning to forecast weather given historical data from two London-based locations. Two distinct Bi-LSTM recurrent neural network models were developed in the TensorFlow deep learning framework and trained to make predictions in the next 24 and 72 h, given the past 120 h. The first trained neural network predicted temperature at Kew Gardens with a forecast accuracy of 2 C in 73% of instances in a whole unseen year, and a root mean squared errors of 1.45 C. The second network predicted 72-h air temperature and relative humidity at Heathrow with root mean squared errors 2.26 C and 14% respectively and 80% of the temperature predictions were within 3 C while 80% of relative humidity predictions were within 20%. Both networks were trained with five years of historical data, with cloud training times of over a minute (24-h network) and three minutes (72-h).
Idioma: Inglés
DOI: 10.1007/s10489-023-04824-w
Año: 2023
Publicado en: APPLIED INTELLIGENCE 53 (2023), 24991-25002
ISSN: 0924-669X

Factor impacto JCR: 3.4 (2023)
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 78 / 197 = 0.396 (2023) - Q2 - T2
Factor impacto CITESCORE: 6.6 - Artificial Intelligence (Q2)

Factor impacto SCIMAGO: 1.193 - Artificial Intelligence (Q2)

Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2026-01-08-14:11:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2026-01-08, última modificación el 2026-01-08


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)