Analysis of singular one-dimensional linear boundary value problems using two-point taylor expansions
Resumen: We consider the second-order linear differential equation (x2 - 1)y'' + f (x)y' + g(x)y = h(x) in the interval (-1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f, g and h are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [-1, 1]. Then, the two end points of the interval may be regular singular points of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor appro-ximation of the analytic solutions when they exist.
Idioma: Inglés
DOI: 10.14232/ejqtde.2020.1.22
Año: 2020
Publicado en: Electronic Journal of Qualitative Theory of Differential Equations 22 (2020), [21 pp.]
ISSN: 1417-3875

Factor impacto JCR: 1.874 (2020)
Categ. JCR: MATHEMATICS rank: 44 / 330 = 0.133 (2020) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 85 / 265 = 0.321 (2020) - Q2 - T1

Factor impacto SCIMAGO: 0.524 - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2017-83490-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2026-01-13-22:10:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2026-01-12, last modified 2026-01-13


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)