000165544 001__ 165544
000165544 005__ 20260112132215.0
000165544 0247_ $$2doi$$a10.3390/app16010465
000165544 0248_ $$2sideral$$a147172
000165544 037__ $$aART-2026-147172
000165544 041__ $$aeng
000165544 100__ $$0(orcid)0000-0003-4404-776X$$aAntolín-Cañada, Diego
000165544 245__ $$aDevelopment of a Leak Detection System Based on Fiber Optic DTS Monitoring and Validation on a Full-Scale Model
000165544 260__ $$c2026
000165544 5060_ $$aAccess copy available to the general public$$fUnrestricted
000165544 5203_ $$aLeaks in ponds are a problem due to the loss of water resources, although the problem is greater when the ponds store livestock or agricultural waste (slurry or wastewater), in which case there is a risk of hydrogeological contamination of the environment. The proposed leak detection system is based on distributed temperature sensing (DTS) with hybrid fiber optics using the Raman effect. Using active detection techniques, i.e., applying a specific amount of electrical power to the copper wires that form part of the hybrid cable, it is possible to increase the temperature along the fiber and measure the thermal increments along it, detecting and locating the point of leakage. To validate the system, a full-scale prototype reservoir (25 m × 10 m × 3.5 m) was built, equipped with mechanisms to simulate leaks under the impermeable sheet that retains the reservoir’s contents. For environmental reasons, the tests were carried out with clean water. The results of the leak simulation showed significant differences in temperature increases due to the electrical pulse in the areas affected by the simulated leak (1 °C increase) and the areas not affected (5 °C increase). This technology, which uses hybrid fiber optics and a low-cost sensor, can be applied not only to ponds, but also to other types of infrastructure that store or retain liquids, such as dams, where it has already been tested, to measure groundwater flow, etc.
000165544 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/AEI-010500-2022b-320
000165544 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000165544 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000165544 700__ $$0(orcid)0000-0002-5585-2126$$aLópez-Julián, Pedro Luis$$uUniversidad de Zaragoza
000165544 700__ $$0(orcid)0000-0002-3970-7295$$aPérez, Javier
000165544 700__ $$aMuñoz, Óscar
000165544 700__ $$0(orcid)0000-0003-2591-1540$$aAcero-Oliete, Alejandro
000165544 700__ $$aRusso, Beniamino
000165544 7102_ $$12000$$2427$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Geodinámica Externa
000165544 773__ $$g16, 465 (2026), 21$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000165544 8564_ $$s4596463$$uhttps://zaguan.unizar.es/record/165544/files/texto_completo.pdf$$yVersión publicada
000165544 8564_ $$s2266809$$uhttps://zaguan.unizar.es/record/165544/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000165544 909CO $$ooai:zaguan.unizar.es:165544$$particulos$$pdriver
000165544 951__ $$a2026-01-12-11:09:47
000165544 980__ $$aARTICLE