Resumen: Rock art in the Albarracín Cultural Park represents one of Spain’s most significant concentrations of post-Paleolithic paintings, yet comprehensive chemical characterization across multiple shelters remained lacking. This study analyzes 102 pigment samples (54 white, 31 black, 17 red) from 12 shelters using portable X-ray fluorescence spectroscopy. Centered log-ratio transformation addressed compositional data constraints, enabling multivariate analyses (PCA, LDA, MANOVA) that properly account for the constant-sum constraint inherent in geochemical data. Linear discriminant analysis achieved 92.6%–100% classification accuracy for site attribution, with barium emerging as the universal discriminating element across all pigment types (Cohen’s d = 4.91–9.19). Iron concentrations confirmed hematite/goethite use in red pigments, with inter-shelter variations suggesting different ochre sources. Black pigments revealed dual technologies: manganese oxides (pyrolusite) and carbon-based materials, with phosphorus enrichment in some samples consistent with possible bone-derived materials, though alternative phosphorus sources cannot be definitively excluded. This technological duality occurred within individual shelters, documenting greater complexity than previously recognized. White pigments combined substrate-derived materials with gypsum and aluminosilicate clay minerals (likely of the kaolinite group), occasionally incorporating phosphate-rich phases. The documented coexistence of compositionally distinct pigments within single shelters (whether from different raw material sources or varied preparation techniques) confirms the technical heterogeneity of Albarracín rock art and challenges assumptions about technological homogeneity in Levantine art production. This interplay between natural geological constraints and cultural technological choices underscores the need for complementary surface-sensitive techniques to fully resolve the technological repertoire of Levantine artists. Idioma: Inglés DOI: 10.3390/min15121328 Año: 2025 Publicado en: Minerals 15, 12 (2025), 1328 ISSN: 2075-163X Financiación: info:eu-repo/grantAgreement/ES/DGA/H04-24 Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Prehistoria (Dpto. Ciencias de la Antigüed.) Área (Departamento): Area Ingeniería Agroforestal (Dpto. CC.Agrar.y Medio Natural)