Resumen: For some families of totally positive matrices using Γ and functions, we provide their bidiagonal factorization. Moreover, when these functions are define dover integers, we prove that the bidiagonal factorization can be computed with high relative accuracy and so we can compute with high relative accuracy their eigenvalues,singular values,inverses and the solutions of some associated linear systems. We provide numerical examples illustrating this high relative accuracy. Idioma: Inglés DOI: 10.1002/nla.2494 Año: 2023 Publicado en: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 30, 5 (2023), e2494 [14 pp.] ISSN: 1070-5325 Factor impacto JCR: 1.8 (2023) Categ. JCR: MATHEMATICS, APPLIED rank: 75 / 332 = 0.226 (2023) - Q1 - T1 Categ. JCR: MATHEMATICS rank: 39 / 490 = 0.08 (2023) - Q1 - T1 Factor impacto CITESCORE: 3.4 - Algebra and Number Theory (Q1) - Applied Mathematics (Q2)