000167933 001__ 167933
000167933 005__ 20260122172506.0
000167933 0247_ $$2doi$$a10.1016/j.combustflame.2020.03.033
000167933 0248_ $$2sideral$$a117739
000167933 037__ $$aART-2020-117739
000167933 041__ $$aeng
000167933 100__ $$0(orcid)0000-0003-1337-0310$$aMuelas, Álvaro$$uUniversidad de Zaragoza
000167933 245__ $$aPyrolysis effects during high-temperature vaporization of alkane droplets
000167933 260__ $$c2020
000167933 5060_ $$aAccess copy available to the general public$$fUnrestricted
000167933 5203_ $$aThe temporal evolution of the droplet radius is measured experimentally in high-temperature inert atmospheres for three different alcohols (ethanol, n-butanol, and glycerol) and three alkanes (n-heptane, n-dodecane, and n-hexadecane). It is shown that, while accompanying theoretical predictions of droplet-radius variations show excellent accuracy for the three alcohols, the three alkanes exhibit vaporization rates that are significantly smaller than those predicted theoretically. The accompanying observation of significant soot formation suggests that endothermic fuel pyrolysis may be responsible for the diminished vaporization rate. The quantification of this phenomenon is investigated here using a one-step irreversible reaction with an Arrhenius rate to model the fuel decomposition. It is shown how an analytical description developed on the basis of activation-energy asymptotics can be used in combination with the experimental measurements of the temporal droplet-radius evolution to adjust the fuel-pyrolysis kinetics, embodied at leading order in an effective pyrolysis temperature, which is obtained for n-heptane, n-dodecane, and n-hexadecane.
000167933 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU15-01866$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-76436-R
000167933 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000167933 590__ $$a4.185$$b2020
000167933 591__ $$aENGINEERING, MECHANICAL$$b24 / 133 = 0.18$$c2020$$dQ1$$eT1
000167933 591__ $$aTHERMODYNAMICS$$b9 / 60 = 0.15$$c2020$$dQ1$$eT1
000167933 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b17 / 90 = 0.189$$c2020$$dQ1$$eT1
000167933 591__ $$aENGINEERING, CHEMICAL$$b44 / 143 = 0.308$$c2020$$dQ2$$eT1
000167933 591__ $$aENERGY & FUELS$$b52 / 114 = 0.456$$c2020$$dQ2$$eT2
000167933 592__ $$a1.89$$b2020
000167933 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000167933 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000167933 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000167933 593__ $$aFuel Technology$$c2020$$dQ1
000167933 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ1
000167933 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000167933 700__ $$aCarpio, Jaime
000167933 700__ $$0(orcid)0000-0003-2863-4681$$aBallester, Javier$$uUniversidad de Zaragoza
000167933 700__ $$aSánchez, Antonio L.
000167933 700__ $$aWilliams, Forman A.
000167933 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000167933 773__ $$g217 (2020), 38-47$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000167933 8564_ $$s9291114$$uhttps://zaguan.unizar.es/record/167933/files/texto_completo.pdf$$yPostprint
000167933 8564_ $$s1427448$$uhttps://zaguan.unizar.es/record/167933/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000167933 909CO $$ooai:zaguan.unizar.es:167933$$particulos$$pdriver
000167933 951__ $$a2026-01-22-16:07:13
000167933 980__ $$aARTICLE