Use of sewage sludge combustion ash and gasification ash for high-temperature desulphurization of different gas streams
Resumen: Due to its metal content, sewage sludge ash appears as a potential sorbent material for H2S removal at high temperature. The desulphurization ability of the solid by-products of combustion and gasification of sewage sludge has been evaluated in this work. Ash characterization results revealed that metal fraction in sewage sludge did not remained completely inert during the combustion and gasification processes. Iron content was lower in the gasification ash and X-ray patterns showed different crystalline phases in the solids: Fe2O3 in the combustion ash and Fe3O4 in the gasification ash. These differences resulted in a lower sulphur capture capacity of the gasification ash
Desulphurization tests were carried out in a lab-scale fixed bed reactor operating at 600- 800 ºC. Different gases containing 5000 ppmv H2S (H2S/N2 mixture and synthetic gasification gas) were used. The H2S breakthrough curves were negatively affected by the reducing atmosphere created by the gasification gas and by the presence of steam in the reaction medium. However, H2S breakthrough curves alone do not provide enough information to evaluate the sulphur capture capacity of the sorbent materials. Ultimate analyses of the spent solid samples showed that the total amount of H2S removed from the gas was only partially captured in the ash. Thermodynamic data pointed to a significant fraction of sulphur forming part of other gases, such as SO2. In the best operating conditions, an outlet gas with less than 100 ppmv of H2S was obtained during 300 min, thus resulting in a sulphur loading of 63 mg S·g-1 ash. This experimental sulphur content was 39% lower than the maximum theoretical value predicted by equilibrium simulations.

Idioma: Inglés
DOI: 10.1016/j.fuel.2014.10.036
Año: 2015
Publicado en: Fuel 141 (2015), 99-108
ISSN: 0016-2361

Factor impacto JCR: 3.611 (2015)
Categ. JCR: ENGINEERING, CHEMICAL rank: 19 / 135 = 0.141 (2015) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 23 / 88 = 0.261 (2015) - Q2 - T1

Factor impacto SCIMAGO: 1.781 - Chemical Engineering (miscellaneous) (Q1) - Organic Chemistry (Q1) - Fuel Technology (Q1) - Energy Engineering and Power Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2010-20137
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2021-01-21-08:13:33)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2015-10-30, last modified 2021-01-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)