Resumen: In this work we study the translocation process of a polymer through a nanochannel where a time dependent force is acting. Two conceptually different types of driving are used: a deterministic sinusoidal one and a random telegraph noise force. The mean translocation time presents interesting resonant minima as a function of the frequency of the external driving. For the computed sizes, the translocation time scales with the polymer length according to a power law with the same exponent for almost all the frequencies of the two driving forces. The dependence of the translocation time with the polymer rigidity, which accounts for the persistence length of the molecule, shows a different low frequency dependence for the two drivings. Idioma: Inglés DOI: 10.1103/PhysRevE.91.022113 Año: 2015 Publicado en: Physical Review E 91, 2 (2015), 022113 [8 pp.] ISSN: 2470-0045 Factor impacto JCR: 2.252 (2015) Categ. JCR: PHYSICS, MATHEMATICAL rank: 6 / 53 = 0.113 (2015) - Q1 - T1 Categ. JCR: PHYSICS, FLUIDS & PLASMAS rank: 10 / 30 = 0.333 (2015) - Q2 - T2 Factor impacto SCIMAGO: 1.183 - Condensed Matter Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Statistics and Probability (Q2)