000046574 001__ 46574 000046574 005__ 20210121114510.0 000046574 0247_ $$2doi$$a10.1090/S0025-5718-2014-02849-4 000046574 0248_ $$2sideral$$a83335 000046574 037__ $$aART-2015-83335 000046574 041__ $$aeng 000046574 100__ $$aGrau, José María 000046574 245__ $$aA primality test for Kp^n+1 numbers 000046574 260__ $$c2015 000046574 5060_ $$aAccess copy available to the general public$$fUnrestricted 000046574 5203_ $$aIn this paper we generalize the classical Proth's theorem and the Miller-Rabin test for integers of the form N = Kpn +1. For these families, we present variations on the classical Pocklington's results and, in particular, a primality test whose computational complexity is Õ(log2 N) and, what is more important, that requires only one modular exponentiation modulo N similar to that of Fermat's test. 000046574 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/ 000046574 590__ $$a1.464$$b2015 000046574 591__ $$aMATHEMATICS, APPLIED$$b39 / 254 = 0.154$$c2015$$dQ1$$eT1 000046574 592__ $$a1.521$$b2015 000046574 593__ $$aAlgebra and Number Theory$$c2015$$dQ1 000046574 593__ $$aComputational Mathematics$$c2015$$dQ1 000046574 593__ $$aApplied Mathematics$$c2015$$dQ1 000046574 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000046574 700__ $$0(orcid)0000-0002-8191-3199$$aOller Marcén, Antonio M. 000046574 700__ $$aSadornil, Daniel 000046574 773__ $$g84 (2015), 505-512$$pMath. comput.$$tMATHEMATICS OF COMPUTATION$$x0025-5718 000046574 8564_ $$s163768$$uhttps://zaguan.unizar.es/record/46574/files/texto_completo.pdf$$yPostprint 000046574 8564_ $$s61614$$uhttps://zaguan.unizar.es/record/46574/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000046574 909CO $$ooai:zaguan.unizar.es:46574$$particulos$$pdriver 000046574 951__ $$a2021-01-21-10:56:45 000046574 980__ $$aARTICLE