Probabilistic Voxel-Fe model for single cell motility in 3D
Financiación FP7 / Fp7 Funds
Resumen: Background: Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical, chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and computational models have been rapidly growing over the past few years, permitting researches to run complex scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them only suitable to study restricted phenomena.
Methods: Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions.
Results: With this approach we are able to capture important outcomes of cell migration such as: velocities, trajectories, cell shape and aspect ratio, cell stress or ECM displacements.
Conclusions: The modular form of the model will allow us to constantly update and redefine it as advancements are made in clarifying how cellular events take place.

Idioma: Inglés
DOI: 10.1186/2196-050X-1-2
Año: 2014
Publicado en: In Silico Cell and Tissue Science 1, 2 (2014), [17 pp.]
ISSN: 2196-050X

Financiación: info:eu-repo/grantAgreement/EUR/FP7/ERC2012-StG-306751
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2010-029927-FPI
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2012-38090-C03-01
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2019-09-30-12:51:32)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-01-22, last modified 2019-09-30


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)