Resumen: The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space are deduced from the application of Melnikov's method that fully determine the chaos-control scenario. Also, the structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally, we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise and reshaping of chaos-suppressing excitations. Idioma: Inglés DOI: 10.1103/PhysRevE.92.062921 Año: 2015 Publicado en: Physical Review E 92, 6 (2015), 062921 [9 pp] ISSN: 2470-0045 Factor impacto JCR: 2.252 (2015) Categ. JCR: PHYSICS, MATHEMATICAL rank: 6 / 53 = 0.113 (2015) - Q1 - T1 Categ. JCR: PHYSICS, FLUIDS & PLASMAS rank: 10 / 30 = 0.333 (2015) - Q2 - T2 Factor impacto SCIMAGO: 1.183 - Condensed Matter Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Statistics and Probability (Q2)