A comparison of public datasets for acceleration-based fall detection

Igual, Raúl (Universidad de Zaragoza) ; Medrano Carlos (Universidad de Zaragoza) ; Plaza, Inmaculada (Universidad de Zaragoza)
A comparison of public datasets for acceleration-based fall detection
Resumen: Falls are one of the leading causes of mortality among the older population, being the rapid detection of a fall a key factor to mitigate its main adverse health consequences. In this context, several authors have conducted studies on acceleration-based fall detection using external accelerometers or smartphones. The published detection rates are diverse, sometimes close to a perfect detector. This divergence may be explained by the difficulties in comparing different fall detection studies in a fair play since each study uses its own dataset obtained under different conditions. In this regard, several datasets have been made publicly available recently. This paper presents a comparison, to the best of our knowledge for the first time, of these public fall detection datasets in order to determine whether they have an influence on the declared performances. Using two different detection algorithms, the study shows that the performances of the fall detection techniques are affected, to a greater or lesser extent, by the specific datasets used to validate them. We have also found large differences in the generalization capability of a fall detector depending on the dataset used for training. In fact, the performance decreases dramatically when the algorithms are tested on a dataset different from the one used for training. Other characteristics of the datasets like the number of training samples also have an influence on the performance while algorithms seem less sensitive to the sampling frequency or the acceleration range.
Idioma: Inglés
DOI: 10.1016/j.medengphy.2015.06.009
Año: 2015
Publicado en: MEDICAL ENGINEERING & PHYSICS 37, 9 (2015), 870-878
ISSN: 1350-4533

Factor impacto JCR: 1.619 (2015)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 45 / 76 = 0.592 (2015) - Q3 - T2
Factor impacto SCIMAGO: 0.794 - Biophysics (Q2) - Biomedical Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/TEC2013-50049-EXP
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2021-01-21-10:49:23)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2016-04-19, last modified 2021-01-21

Rate this document:

Rate this document:
(Not yet reviewed)