Amplitude dynamics favors synchronization in complex networks
Resumen: In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.
Idioma: Inglés
DOI: 10.1038/srep24915
Año: 2016
Publicado en: SCIENTIFIC REPORTS 6 (2016), 24915[9pp]
ISSN: 2045-2322

Factor impacto JCR: 4.259 (2016)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 10 / 63 = 0.159 (2016) - Q1 - T1
Factor impacto SCIMAGO: 1.691 - Multidisciplinary (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E19
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2012-38266
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-55867-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)
Exportado de SIDERAL (2020-02-21-13:36:19)

Este artículo se encuentra en las siguientes colecciones:

 Notice créée le 2016-06-03, modifiée le 2020-02-21

Versión publicada:
Évaluer ce document:

Rate this document:
(Pas encore évalué)