A continuous model for quasinilpotent operators
Resumen: A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space (Formula presented.). More precisely, given a quasinilpotent operator T on (Formula presented.), there exists a compact quasinilpotent operator K in (Formula presented.) such that T is similar to a part of (Formula presented.) acting on the direct sum of countably many copies of (Formula presented.). We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of (Formula presented.)-semigroups of quasinilpotent operators.
Idioma: Inglés
DOI: 10.1007/s00209-016-1673-2
Año: 2016
Publicado en: MATHEMATISCHE ZEITSCHRIFT (2016), 1-10
ISSN: 0025-5874

Factor impacto JCR: 0.738 (2016)
Categ. JCR: MATHEMATICS rank: 123 / 310 = 0.397 (2016) - Q2 - T2
Factor impacto SCIMAGO: 1.691 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-14-08134
Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Exportado de SIDERAL (2020-02-21-13:09:52)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2016-06-03, last modified 2020-02-21

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)