Sharp extensions and algebraic properties for solution families of vector-valued differential equations
Resumen: In this paper we show the unexpected property that extension from local to global without loss of regularity holds for the solutions of a wide class of vector-valued differential equations, in particular for the class of fractional abstract Cauchy problems in the subdiffusive case. The main technique is the use of the algebraic structure of these solutions, which are defined by new versions of functional equations defining solution families of bounded operators. The convolution product and the double Laplace transform for functions of two variables are useful tools which we apply also to extend these solutions. Finally we illustrate our results with different concrete examples.
Idioma: Inglés
DOI: 10.1215/17358787-3345137
Año: 2016
Publicado en: BANACH JOURNAL OF MATHEMATICAL ANALYSIS 10, 1 (2016), 196-208
ISSN: 1735-8787

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.833 (2016)
Categ. JCR: MATHEMATICS rank: 90 / 310 = 0.29 (2016) - Q2 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 146 / 255 = 0.573 (2016) - Q3 - T2

Factor impacto SCIMAGO: 0.893 - Analysis (Q2) - Algebra and Number Theory (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E64
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Exportado de SIDERAL (2020-02-21-13:24:41)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2016-06-29, last modified 2020-02-21

Rate this document:

Rate this document:
(Not yet reviewed)