000056125 001__ 56125
000056125 005__ 20200221144252.0
000056125 0247_ $$2doi$$a10.1103/PhysRevApplied.5.054009
000056125 0248_ $$2sideral$$a95115
000056125 037__ $$aART-2016-95115
000056125 041__ $$aeng
000056125 100__ $$aSchaab, J.
000056125 245__ $$aContact-Free Mapping of Electronic Transport Phenomena of Polar Domains in SrMnO3 Films
000056125 260__ $$c2016
000056125 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056125 5203_ $$aHigh-resolution mapping of electronic transport phenomena plays an increasingly important role for the characterization of ferroic domains and their functionality. At present, spatially resolved electronic transport data are commonly gained from local two-point measurements, collected in line-by-line scans with a conducting nanosized probe. Here, we introduce an innovative experimental approach based on low- energy electron microscopy. As a model case, we study polar domains of varying conductance in strained SrMnO3. By a direct comparison with conductive atomic force and electrostatic force microscopy, we reveal that the applied low-energy electron-microscopy experiment can be considered as an inverse IðVÞ measurement, providing access to the local electronic conductance with nanoscale resolution and short data-acquisition times in the order of 10–102 ms. Low-energy electrons thus hold yet unexplored application opportunities as a minimal-invasive probe for local electronic transport phenomena, opening a promising route towards spatially resolved, high-throughput sampling at the nanoscale.
000056125 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26-304043$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51982-C2
000056125 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056125 590__ $$a4.808$$b2016
000056125 591__ $$aPHYSICS, APPLIED$$b21 / 147 = 0.143$$c2016$$dQ1$$eT1
000056125 592__ $$a2.448$$b2016
000056125 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ1
000056125 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056125 700__ $$aKrug, I.P.
000056125 700__ $$aDoganay, H.
000056125 700__ $$aHackl, J.
000056125 700__ $$aGottlob, D.M.
000056125 700__ $$aKhan, M.I.
000056125 700__ $$aNemsak, S.
000056125 700__ $$0(orcid)0000-0002-6487-1505$$aMaurel, L.$$uUniversidad de Zaragoza
000056125 700__ $$0(orcid)0000-0002-6944-4713$$aLangenberg, E.
000056125 700__ $$0(orcid)0000-0002-4698-3378$$aAlgarabel, P.A.$$uUniversidad de Zaragoza
000056125 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, J.A.$$uUniversidad de Zaragoza
000056125 700__ $$aSchneider, C.M.
000056125 700__ $$aMeier, D.
000056125 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056125 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000056125 773__ $$g5 (2016), 054009 [7 pp.]$$pPhys. rev. appl.$$tPhysical review applied$$x2331-7019
000056125 8564_ $$s1413772$$uhttps://zaguan.unizar.es/record/56125/files/texto_completo.pdf$$yPostprint
000056125 8564_ $$s38078$$uhttps://zaguan.unizar.es/record/56125/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056125 909CO $$ooai:zaguan.unizar.es:56125$$particulos$$pdriver
000056125 951__ $$a2020-02-21-13:28:08
000056125 980__ $$aARTICLE