Symbolic dynamical unfolding of spike-adding bifurcations in chaotic neuron models
Resumen: We characterize the systematic changes in the topological structure of chaotic attractors that occur as spike-adding and homoclinic bifurcations are encountered in the slow-fast dynamics of neuron models. This phenomenon is detailed in the simple Hindmarsh-Rose neuron model, where we show that the unstable periodic orbits appearing after each spike-adding bifurcation are associated with specific symbolic sequences in the canonical symbolic encoding of the dynamics of the system. This allows us to understand how these bifurcations modify the internal structure of the chaotic attractors.
Idioma: Inglés
DOI: 10.1209/0295-5075/109/20002
Año: 2015
Publicado en: Europhysics letters 109, 2 (2015), 20002 [6 pp.]
ISSN: 0295-5075

Factor impacto JCR: 1.963 (2015)
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 19 / 79 = 0.241 (2015) - Q1 - T1
Factor impacto SCIMAGO: 0.625 - Physics and Astronomy (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-31883
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2021-01-21-10:55:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2016-07-18, last modified 2021-01-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)