Accueil > articulos > In-situ preparation of a highly accessible Pt/CNF catalytic layer on metallic microchannel reactors. Application to the SELOX reaction
Resumen: A general method to prepare a catalytic coating on the surface of stainless steel microreactors has been developed. The catalytic support consists of a layer of randomly oriented, highly accessible carbon nanofibers (CNFs), directly grown on the surface of the channels by chemical vapor deposition (CVD) of ethanol. These CNFs are functionalized to acquire a positive charge before a solution containing metallic nanoparticles (Pt) is flown through the channels. The nanoparticles adhere to the surface of the CNFs thanks to electrostatic interactions. This process is carried out in-situ and the method can be easily adapted to larger scale production. These catalyst-coated microchannel reactors have been tested in the selective oxidation (SELOX) of CO in the presence of H2. The results were compared to those obtained in a conventional fixed bed reactor packed with Pt/CNTs. The microreactor clearly outperformed the fixed bed reactor at the same space velocity (WSHV = 2220 l/h gPt),), achieving total CO conversion at temperatures 50ºC lower. Idioma: Inglés DOI: 10.1016/j.apcata.2015.07.035 Año: 2015 Publicado en: APPLIED CATALYSIS A-GENERAL 505 (2015), 193-199 ISSN: 0926-860X Factor impacto JCR: 4.012 (2015) Categ. JCR: ENVIRONMENTAL SCIENCES rank: 29 / 225 = 0.129 (2015) - Q1 - T1 Categ. JCR: CHEMISTRY, PHYSICAL rank: 35 / 144 = 0.243 (2015) - Q1 - T1 Factor impacto SCIMAGO: 1.218 - Process Chemistry and Technology (Q1) - Catalysis (Q2)