Effect of the separated approximation of input data in the accuracy of the resulting PGD solution
Resumen: The proper generalized decomposition (PGD) requires separability of the input data (e.g. physical properties, source term, boundary conditions, initial state). In many cases the input data is not expressed in a separated form and it has to be replaced by some separable approximation. These approximations constitute a new error source that, in some cases, may dominate the standard ones (discretization, truncation...) and control the final accuracy of the PGD solution. In this work the relation between errors in the separated input data and the errors induced in the PGD solution is discussed. Error estimators proposed for homogenized problems and oscillation terms are adapted to asses the behaviour of the PGD errors resulting from approximated input data. The PGD is stable with respect to error in the separated data, with no critical amplification of the perturbations. Interestingly, we identified a high sensitiveness of the resulting accuracy on the selection of the sampling grid used to compute the separated data. The separation has to be performed on the basis of values sampled at integration points: sampling at the nodes defining the functional interpolation results in an important loss of accuracy. For the case of a Poisson problem separated in the spatial coordinates (a complex diffusivity function requires a separable approximation), the final PGD error is linear with the truncation error of the separated data. This relation is used to estimate the number of terms required in the separated data, that has to be in good agreement with the truncation error accepted in the PGD truncation (tolerance for the stoping criteria in the enrichment procedure). A sensible choice for the prescribed accuracy of the PGD solution has to be kept within the limits set by the errors in the separated input data.
Idioma: Inglés
DOI: 10.1186/s40323-015-0052-6
Año: 2015
Publicado en: Advanced modeling and simulation in engineering sciences 2, 28 (2015), [14 pp.]
ISSN: 2213-7467

Factor impacto SCIMAGO:

Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2014-51844-C2-1-2-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Mec. de Medios Contínuos y Teor. de Estructuras (Departamento de Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2016-12-15-15:03:38)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Registro creado el 2016-12-15, última modificación el 2017-03-27


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)