Volume inequalitites for the i-th convolution bodies
Resumen: We obtain a new extension of Rogers–Shephard inequality providing an upper bound for the volume of the sum of two convex bodies K and L. We also give lower bounds for the volume of the k-th limiting convolution body of two convex bodies K and L. Special attention is paid to the (n - 1)-th limiting convolution body, for which a sharp inequality, which is equality only when K = -L is a simplex, is given. Since the n-th limiting convolution body of K and -K is the polar projection body of K, these inequalities can be viewed as an extension of Zhang’s inequality.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2014.11.033
Año: 2015
Publicado en: Journal of Mathematical Analysis and Applications 424 (2015), 385-401
ISSN: 0022-247X

Factor impacto JCR: 1.014 (2015)
Categ. JCR: MATHEMATICS rank: 56 / 312 = 0.179 (2015) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 88 / 254 = 0.346 (2015) - Q2 - T2

Factor impacto SCIMAGO: 1.15 - Applied Mathematics (Q1) - Analysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2009-10418
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2010-16679
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2021-01-21-10:51:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2016-12-19, modifiée le 2021-01-21


Preprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)