TAZ-TFM-2011-023


Acquisition, characterization and classification of feedback event-related potentials during a time-estimation task

López Larraz, Eduardo
Mínguez Zafra, Javier (dir.) ; Montesano del Campo, Luis (dir.)

Universidad de Zaragoza, CPS, 2011
Informática e Ingeniería de Sistemas department, Ingeniería de Sistemas y Automática area

Máster Universitario en Ingeniería Biomédica

Abstract: Las señales de feedback son componentes fundamentales dentro de los interfaces cerebro-ordenador (brain-computer interfaces o BCI), ya que suministran información para guiar la tarea ejecutada en cada momento. Se ha demostrado que la presentación de este tipo de estímulos produce cierta actividad en el cerebro que puede ser medida y clasificada. Dado que estos estímulos pueden darse mediante distintas modalidades sensoriales, es importante conocer los efectos que cada tipo de feedback produce en las señales cerebrales, así como cuál es el impacto que tiene en la clasificación de estos potenciales. El objetivo de este trabajo fin de máster es la realización de un estudio sobre los potenciales elicitados en el cerebro tras la presentación de señales de feedback, tanto positivo como negativo, mediante tres vías sensoriales: visual, auditiva y táctil. Se pretende desarrollar una BCI que permita adquirir potenciales evocados por distintos estímulos de feedback para su posterior caracterización y clasificación. La estructura del presente trabajo se divide en cinco bloques principales. El primero de ellos consistió en la búsqueda y estudio de bibliografía relacionada, lo cual permitió al autor crear la base de conocimiento necesaria para realizar el resto del trabajo. En segundo lugar se procedió a diseñar una BCI con un protocolo de experimentación que permitiese adquirir los potenciales cerebrales elicitados por feedback, mediante el registro de señal electroencefalográfica (EEG). Una vez ideado el protocolo, se procedió a la ejecución de una serie de sesiones de experimentación con 15 personas. De ellas, 5 realizaron los experimentos recibiendo la modalidad de feedback visual, 5 recibieron la modalidad auditiva y 5 táctil. Por tanto, la parte práctica de este trabajo se ha basado en la realización de 30 sesiones de experimentación (2 con cada uno de los sujetos), de alrededor de una hora de duración cada una. Cada sesión de experimentación consistió en realizar un montaje de electroencefalograma con 32 electrodos, ejecución y supervisión de la brain-computer interface, y finalmente retirada de todo el equipo de EEG y limpieza del mismo. Las sesiones de experimentos de 5 de los sujetos se realizaron en un laboratorio acondicionado para tal efecto en la Universidad de Zaragoza, las de los restantes 10 sujetos fueron realizadas en Bit&Brain; Technologies, empresa spin-off de la Universidad de Zaragoza que se dedica a tareas de I+D utilizando tecnología BCI. Tras la obtención de la actividad EEG de las 15 personas, el siguiente paso consistió en realizar una caracterización de los potenciales adquiridos. Esta caracterización fue llevada a cabo desde el punto de vista de señal (Grand Averages) y de localización de fuentes, estudiando los focos de activación cerebral que generan el EEG medido. En último lugar, se procedió a la evaluación de varias estrategias de clasificación basadas en Support Vector Machines. Mediante la exploración de distintas estrategias se trató de evaluar el porcentaje de clasificación que se obtiene cuando se entrena el sistema con datos del propio sujeto que se va a clasicar y cuando se entrena con datos de sujetos distintos, tanto si sus señales han sido generadas por la misma modalidad de feedback como si han sido generadas por alguna otra. De forma adicional al trabajo inicialmente descrito en la propuesta de este trabajo fin de máster y, partiendo de los buenos resultados obtenidos, se quiso ir más allá, dando una aplicación práctica a las herramientas desarrolladas. Dado que el reconocimiento de potenciales elicitados por feedback tiene un gran potencial en algunas terapias de rehabilitacion, se utilizaron datos de un entrenamiento de neurofeedback para mejoras cognitivas, llevado a cabo en la empresa Bit&Brain; Technologies con sujetos sanos. Durante este entrenamiento se adquirieron potenciales de feedback de 5 sujetos, que fueron estudiados y clasificados del mismo modo que los adquiridos con el protocolo incialmente diseñado.


Free keyword(s): interfaz cerebro-ordenador ; brain computer interface ; eeg ; event-related potential ; feedback ; caracterización de actividad cerebral ; neurofeedback
Tipo de Trabajo Académico: Trabajo Fin de Master

Creative Commons License



El registro pertenece a las siguientes colecciones:
Academic Works > Trabajos Académicos por Centro > centro-politecnico-superior
Academic Works > End-of-master works



Back to search

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)