An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers
Resumen: In this paper we consider a 1D parabolic singularly perturbed reaction-convection-diffusion problem, which has a small parameter in both the diffusion term (multiplied by the parameter e2) and the convection term (multiplied by the parameter µ) in the differential equation (e¿(0, 1], µ¿0, 1], µ=e). Moreover, the convective term degenerates inside the spatial domain, and also the source term has a discontinuity of first kind on the degeneration line. In general, for sufficiently small values of the diffusion and the convection parameters, the exact solution exhibits an interior layer in a neighborhood of the interior degeneration point and also a boundary layer in a neighborhood of both end points of the spatial domain. We study the asymptotic behavior of the exact solution with respect to both parameters and we construct a monotone finite difference scheme, which combines the implicit Euler method, defined on a uniform mesh, to discretize in time, together with the classical upwind finite difference scheme, defined on an appropriate nonuniform mesh of Shishkin type, to discretize in space. The numerical scheme converges in the maximum norm uniformly in e and µ, having first order in time and almost first order in space. Illustrative numerical results corroborating in practice the theoretical results are showed.
Idioma: Inglés
DOI: 10.1016/j.cam.2015.10.031
Año: 2017
Publicado en: Journal of Computational and Applied Mathematics 318 (2017), 634-645
ISSN: 0377-0427

Factor impacto JCR: 1.632 (2017)
Categ. JCR: MATHEMATICS, APPLIED rank: 49 / 252 = 0.194 (2017) - Q1 - T1
Factor impacto SCIMAGO: 0.938 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-40842-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2014-52859
Financiación: info:eu-repo/grantAgreement/ES/UZ/CUD2014-CIE-09
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2019-07-09-11:24:57)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-06-12, last modified 2019-07-09


Preprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)