Spatiotemporal Model-Based Estimation of High-Density Atrial Fibrillation Activation Map
Resumen: Examination of activation maps using multi-electrode array (MEA) sensors can help to understand the mechanisms underlying atrial fibrillation (AF). Classically, creation of activation maps starts with detection of local activation times (LAT) based on recorded unipolar electrograms. LAT detection has a limited robustness and accuracy, and generally requires manual edition. In general, LAT detection ignores spatiotemporal information of activation embedded in the relation between electrode signals on the MEA mapping sensor. In this work, a unified approach to construct activation maps by simultaneous analysis of activation patterns from overlapping clusters of MEA electrodes is proposed. An activation model fits on the measured data by iterative optimization of the model parameters based on a cost function. The accuracy of the estimated activation maps was evaluated by comparison with audited maps created by expertelectrophysiologists during sinus rhythm (SR) and AF. During SR recordings, 25 activation maps (3100 LATs) were automatically determined resulting in an average LAT estimation error of -0.66 ±2.00msand a correlation of ¿s=0.98compared to the expert reference. During AF recordings (235 maps, 28226 LATs), the estimation error was -0.83 ±6.02mswith only a slightly lower correlation (¿s=0.93). In conclusion, complex spatial activation patterns can be decomposed into local activation patterns derived from fitting an activation model, allowing the creation of smooth and comprehensive high-density activation maps.
Idioma: Inglés
DOI: 10.1016/j.dsp.2016.04.002
Año: 2016
Publicado en: DIGITAL SIGNAL PROCESSING 54 (2016), 64-74
ISSN: 1051-2004

Factor impacto JCR: 2.337 (2016)
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 98 / 260 = 0.377 (2016) - Q2 - T2
Factor impacto SCIMAGO: 0.597 - Signal Processing (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T96
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2011-046644
Financiación: info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-13-06613
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TEC2013-42140-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2020-02-21-13:37:31)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2017-06-12, last modified 2020-02-21

Rate this document:

Rate this document:
(Not yet reviewed)