Albanese varieties of cyclic covers of the projective plane and orbifold pencils
Resumen: The paper studies a relation between fundamental group of the complement to a plane singular curve and the orbifold pencils containing it. The main tool is the use of Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient conditions for a plane singular curve to belong to an orbifold pencil, i.e. a pencil of plane curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental group is non trivial. We construct an example of a cyclic cover of the projective plane which is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent to which these conditions are necessary.
Idioma: Inglés
DOI: 10.1017/nmj.2016.54
Año: 2017
Publicado en: NAGOYA MATHEMATICAL JOURNAL 227 (2017), 189-213
ISSN: 0027-7630

Factor impacto JCR: 0.776 (2017)
Categ. JCR: MATHEMATICS rank: 125 / 309 = 0.405 (2017) - Q2 - T2
Factor impacto SCIMAGO: 0.892 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Exportado de SIDERAL (2019-07-09-11:25:39)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2017-06-14, modifiée le 2019-07-09


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)