Invariant solutions to the Strominger system and the heterotic equations of motion
Resumen: We construct many new invariant solutions to the Strominger system with respect to a 2-parameter family of metric connections ¿e,¿¿e,¿ in the anomaly cancellation equation. The ansatz ¿e,¿¿e,¿ is a natural extension of the canonical 1-parameter family of Hermitian connections found by Gauduchon, as one recovers the Chern connection ¿c¿c for View the MathML source(e,¿)=(0,12), and the Bismut connection ¿+¿+ for View the MathML source(e,¿)=(12,0). In particular, explicit invariant solutions to the Strominger system with respect to the Chern connection, with non-flat instanton and positive a'a' are obtained. Furthermore, we give invariant solutions to the heterotic equations of motion with respect to the Bismut connection. Our solutions live on three different compact non-Kähler homogeneous spaces, obtained as the quotient by a lattice of maximal rank of a nilpotent Lie group, the semisimple group SL(2,C)SL(2,C) and a solvable Lie group. To our knowledge, these are the only known invariant solutions to the heterotic equations of motion, and we conjecture that there is no other such homogeneous space admitting an invariant solution to the heterotic equations of motion with respect to a connection in the ansatz ¿e,¿¿e,¿.
Idioma: Inglés
DOI: 10.1016/j.nuclphysb.2017.04.021
Año: 2017
Publicado en: NUCLEAR PHYSICS B 920 (2017), 442-474
ISSN: 0550-3213

Factor impacto JCR: 3.285 (2017)
Categ. JCR: PHYSICS, PARTICLES & FIELDS rank: 11 / 29 = 0.379 (2017) - Q2 - T2
Factor impacto SCIMAGO: 1.744 - Nuclear and High Energy Physics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2014-58616-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Exportado de SIDERAL (2019-07-09-11:39:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2017-06-20, modifiée le 2019-07-09


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)