An accurate discretization for an inhomogeneous transport equation with arbitrary coefficients and source
Resumen: A new way of obtaining the algebraic relation between the nodal values in a general one-dimensional transport equation is presented. The equation can contain an arbitrary source and both the convective flux and the diffusion coefficient may vary arbitrarily. Contrary to the usual approach of approximating the derivatives involved, the algebraic relation is based on the exact solution written in integral terms. The required integrals can be speedily evaluated by approximating the integrand with Hermite splines or applying Gauss quadrature rules. The startling point about the whole procedure is that a very high accuracy can be obtained with few nodes, and more surprisingly, it can be increased almost up to machine accuracy by augmenting the number of quadrature points or the Hermite spline degree with little extra cost.
Idioma: Inglés
DOI: 10.1016/j.compfluid.2015.11.006
Año: 2016
Publicado en: Computers and Fluids 125 (2016), 101-115
ISSN: 0045-7930

Factor impacto JCR: 2.313 (2016)
Categ. JCR: MECHANICS rank: 32 / 133 = 0.241 (2016) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 36 / 105 = 0.343 (2016) - Q2 - T2

Factor impacto SCIMAGO: 1.008 - Engineering (miscellaneous) (Q1) - Computer Science (miscellaneous) (Q1)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)
Exportado de SIDERAL (2020-02-21-13:04:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mecanica_de_fluidos



 Notice créée le 2017-06-28, modifiée le 2020-02-21


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)