Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: effect of operating conditions on the process
Resumen: This work analyses the influence of the temperature (310–450 C), pressure (200–260 bar), catalyst/biooil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m3 STP, was made up of a mixture of H2 (9–31 vol.%), CO2 (41–84 vol.%), CO (1–22 vol.%) and CH4 (1–45 vol.%). The greatest H2 production from bio-oil (76% gas yield with a relative amount of H2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a temperature of around 344 C, a pressure of 233 bar, a catalyst/bio-oil ratio of 0.16 g/g and a reaction time of 9 min a compromise was reached between the yield and the quality of the upgraded liquid, enabling the transformation of 62% of the bio-oil into liquid with a HHV (29 MJ/kg) about twice as high as that of the original feedstock (17 MJ/kg).
Idioma: Inglés
DOI: 10.1016/j.enconman.2016.04.010
Año: 2016
Publicado en: Energy Conversion and Management 119 (2016), [59 pp.]
ISSN: 0196-8904

Factor impacto JCR: 5.589 (2016)
Categ. JCR: ENERGY & FUELS rank: 10 / 92 = 0.109 (2016) - Q1 - T1
Categ. JCR: THERMODYNAMICS rank: 2 / 58 = 0.034 (2016) - Q1 - T1
Categ. JCR: MECHANICS rank: 4 / 133 = 0.03 (2016) - Q1 - T1

Factor impacto SCIMAGO: 2.232 - Energy Engineering and Power Technology (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Nuclear Energy and Engineering (Q1) - Fuel Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/GPT
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2011-044856
Financiación: info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-14-08688
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2013-41523-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2020-02-21-13:19:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-07-25, last modified 2020-02-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)