Convolutional Sparse Coding for Capturing High-Speed Video Content

Serrano, Ana (Universidad de Zaragoza) ; Garces, Elena ; Masia, Belen (Universidad de Zaragoza) ; Gutierrez, Diego (Universidad de Zaragoza)
Convolutional Sparse Coding for Capturing High-Speed Video Content
Financiación H2020 / H2020 Funds
Resumen: Video capture is limited by the trade-off between spatial and temporal resolution: when capturing videos of high temporal resolution, the spatial resolution decreases due to bandwidth limitations in the capture system. Achieving both high spatial and temporal resolution is only possible with highly specialized and very expensive hardware, and even then the same basic trade-off remains. The recent introduction of compressive sensing and sparse reconstruction techniques allows for the capture of single-shot high-speed video, by coding the temporal information in a single frame, and then reconstructing the full video sequence from this single-coded image and a trained dictionary of image patches. In this paper, we first analyse this approach, and find insights that help improve the quality of the reconstructed videos. We then introduce a novel technique, based on convolutional sparse coding (CSC), and show how it outperforms the state-of-the-art, patch-based approach in terms of flexibility and efficiency, due to the convolutional nature of its filter banks. The key idea for CSC high-speed video acquisition is extending the basic formulation by imposing an additional constraint in the temporal dimension, which enforces sparsity of the first-order derivatives over time.
Idioma: Inglés
DOI: 10.1111/cgf.13086
Año: 2017
Publicado en: COMPUTER GRAPHICS FORUM 36, 8 (2017), 380-389
ISSN: 0167-7055

Factor impacto JCR: 2.046 (2017)
Categ. JCR: COMPUTER SCIENCE, SOFTWARE ENGINEERING rank: 22 / 104 = 0.212 (2017) - Q1 - T1
Factor impacto SCIMAGO: 0.597 - Computer Networks and Communications (Q1) - Computer Graphics and Computer-Aided Design (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/682080/EU/Intuitive editing of visual appearance from real-world datasets/CHAMELEON
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BLINK
Financiación: info:eu-repo/grantAgreement/ES/MINECO/IMAGER-TIN2016-79710-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/Lightslice
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2019-07-09-11:29:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2017-10-02, modifiée le 2019-07-09


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)