Cross products, invariants, and centralizers
Resumen: An algebra V with a cross product x has dimension 3 or 7. In this work, we use 3-tangles to describe, and provide a basis for, the space of homomorphisms from V-circle times n to V-circle times m that are invariant under the action of the automorphism group Aut(V, x) of V, which is a special orthogonal group when dim V = 3, and a simple algebraic group of type G(2) when dim V = 7. When m = n, this gives a graphical description of the centralizer algebra End(Aut(v, x))(V-circle times n), and therefore, also a graphical realization of the Aut(V, x)-invariants in V-circle times 2n equivalent to the First Fundamental Theorem of Invariant Theory. We show how the 3-dimensional simple Kaplansky Jordan superalgebra can be interpreted as a cross product (super)algebra and use 3-tangles to obtain a graphical description of the centralizers and invariants of the Kaplansky superalgebra relative to the action of the special orthosymplectic group.
Idioma: Inglés
DOI: 10.1016/j.jalgebra.2016.11.013
Año: 2018
Publicado en: JOURNAL OF ALGEBRA 500 (2018), 69-102
ISSN: 0021-8693

Factor impacto JCR: 0.666 (2018)
Categ. JCR: MATHEMATICS rank: 189 / 313 = 0.604 (2018) - Q3 - T2
Factor impacto SCIMAGO: 1.137 - Algebra and Number Theory (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/FSE
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2013-45588-C3-2-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2019-11-27-15:47:05)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2018-05-22, last modified 2019-11-27

Rate this document:

Rate this document:
(Not yet reviewed)