Resumen: We prove that the uniform probability measure µ on every (n-k)-dimensional projection of the n-dimensional unit cube verifies the variance conjecture with an absolute constant C Varµ|x|2=Csup¿¿Sn-1¿Eµ<x, ¿>2Eµ|x|2, provided that 1=k=n. We also prove that if 1=k=n[Formula presented], the conjecture is true for the family of uniform probabilities on its projections on random (n-k)-dimensional subspaces. Idioma: Inglés DOI: 10.1016/j.jmaa.2017.05.071 Año: 2017 Publicado en: Journal of Mathematical Analysis and Applications 455, 1 (2017), 638-649 ISSN: 0022-247X Factor impacto JCR: 1.138 (2017) Categ. JCR: MATHEMATICS rank: 53 / 309 = 0.172 (2017) - Q1 - T1 Categ. JCR: MATHEMATICS, APPLIED rank: 99 / 252 = 0.393 (2017) - Q2 - T2 Factor impacto SCIMAGO: 1.103 - Applied Mathematics (Q1) - Analysis (Q2)